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Nonlinear Analysis of Microwave FET
Oscillators Using Volterra Series

YONGCAI HU, JUAN JESUS OBREGON, AND JEAN-CLAUDE MOLI.IER

Abstract — In this paper, a novel approach to determine the amplitude

and frequency of nonlinear FET oscillators is presented. The nonlinear

elements of the active device are modeled by Volterra series. The fre-

quency and amplitnde of oscillation are then calculated by solving two

algebraic equations. Experimental results obtained from a constructed

oscillator confirm the validity of the tfreory, the discrepancy between

measured and calculated frequency and amplitude valnes being less than 10

percent.

I. INTRODUCTION

I N ORDER TO determine the amplitude and frequency

of a nearly sinusoidal oscillator, several methods have

been used, among them the describing function method [1]

and the harmonic balance method [2]. Recently, the use of

Volterra series has been proposed to analyze the oscilla-

tions in nonlinear systems [3]. In this paper, we demon-

strate the applicability of the Volterra series method to the

design of microwave oscillators. The amplitude and fre-

quency of oscillation may be obtained quickly to within

any desired accuracy using a recursive algorithm.

II. THEORETICAL BACKGROUND

The describing function formalism is very attractive for

one-port active device oscillators. Based on this formalism,

a method has been proposed by Bates [1] to calculate the

amplitude and frequency of oscillation for an IMPATT

diode oscillator.

For two-port actives devices such as FET’s, the nonlin-

earities depend on two variables: the gate–source voltage

Ug,(t) and the drain–source voltage Ud,( t ). In this case, the

Volterra series can serve in the analysis of a nearly sinu-

soidal oscillator.

Let us consider a single-loop nonlinear feedback system

and its associated open loop, as illustrated in Fig. l(a) and

(b), respectively. This system is assumed to have a conver-

gent Volterra series representation [4]:
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Fig. 1. (a) A closed-loop nonlinear feedback system. (b) Associated

open-loop nonlinear system
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Fig. 2. (a) Equivalent representation of single-loop feedback system in

Fig. l(a). (b) Associated open-loop system.

where U(t) and y(t) are the input and the output signals,

respectively, and Ui is a radian frequency. We have to

calculate the determining equation of this system, from

which the amplitude and frequency of oscillation can be

determined.

If the system in Fig. 1 has a periodic solution of radian

frequency co, then in general alll harmonics kti of this

fundamental pulsation can be found in the Fourier spec-

trum of U(t) and y(t). The fundamental frequency com-

ponent can be extracted from y(t) using an ideal low-pass

filter P and the remaining components by an ideal high-

pass filter F – P. Then, transformation of the single-loop

feedback system into the system shown in Fig. 2(a) imme-

diately follows.

From the definition of P, we can write

A A*
u(t)=P[y(t)] =~eJ”r+ye-~”r (2)

where A is the complex amplitude

pulsation o.

Now cut the loop in Fig. 2(a) and

system in Fig. 2(b). The output z of

of the signal at the

redraw the resulting

the associated open-
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loop system S is written as follows:

A= A>

z(t) =—eJ”f+ —e”J”f
2 2

(3)

because of the “ideal filter P.”

The necessary and sufficient condition for the system in

Fig. l(a) to have a periodic solution of pulsation is that

A== A. According to this condition, the determining equa-

tions can be calculated.

With the help of Volterra series theory, the Nth-order

determining equation is obtained as (see the Appendix)

dN(A, Q) =H1(jti)+ Q1(ju)lA12 +Q2(ju)lA14+ . . .

+QN(ju)lA12N–1=0 (4)

so that its solution gives the output amplitude A and

pulsation of the nearly sinusoidal oscillation to any desired

accuracy with increasing N. In our applications, only weak

nonlinearity is considered and an acceptable accuracy can

be obtained (about 10 percent) in solving the first-order

determining equation. So for N =1, eq. (4) becomes

dI(.@)= HI(.@)+%(ja)A2-1=0 (5)

where

1
Ql(~@)=~{~3(j@,jti,-jti)

+&3(jU, –jO, jU)+&3(–jQ, jU, jU)} (6)

with

H2(jcJ, j(d)
x3(j@, ju, –j@)=H2(j2u, –ju)

l–H1(j2ti)

H2(j@, –ju)

‘~2(~o’0) l–HI(0)
+H3(ju, jti, –j~) (7a)

H2(–jkr, ju)
#3(–j@, ju, jti)=H2(o, jti)

1 – HI(0)

H2(ju, jti)
+H2(–jti, j2a)

l–H1(j2u)
+H3(–ju, jti, ju) (7b)

and

H2(jti, -jco)
3_&3(jcd,-ju, jcd)=H2(0, jti)

1 – HI(0)

H2(–jti, jo)

+ ‘2(~’’”0) l–HI(0)
+H3(j@, –ju, ju). (7C)

The second- and third-order transfer functions H2 and H3

are defined in the Appendix.

III. APPLICATION TO MICROWAVE

FET OSCILLATORS

Let us consider a microwave FET oscillator with a

parallel feedback configuration as schematized in Fig. 3.

CF and L~ are feedback components which may be con-

sidered as electrically equivalent to a length of transmis-

sion line.

&fF-l
El
I I

Fig. 3. A microwave FET oscillator with parallel feedback and resistive
load R<.

Z1

Z2

Fig. 4. Equivalent circuit of the open-loop FET oscillator for calculat-
ing the transfer functions:

Lge = 0.136 nH CE== 0.25 pF Rg = 2.75 L?

Lg = 0.33 nH Cgd = 0.046 pF R,=3.8fl

LJ, = 0.09 nH Cd, = 0.20 pF R,=l.2il

Ld = 0.42 nH Cd, = 0.29 pF Rd=l.9il

L, = 0,04 nH

The transfer functions HI, H2, and H3 of its associated

open-loop circuit (Fig. 4) can be calculated by a recursive

algorithm (see the Appendix) where three nonlinearities

have been considered: the transconductance ( g~) and the

drain conductance ( g~) (both represented by a current

source l), and the Schottky-barrier junction capacitance

Cg,. 21 and 22 represent the load impedances when the

loop is opened.

The drain-to-source and gate-to-source currents ld, and

Ig, can be approximated by a power series as

zzis(~)= i [gmk”;s(i)+gdku$s(t)] (8)
k=l

and

lg.(l) = : +g,p:,(t) (9)
k–

where Ud, is the drain-source voltage and Ug, is the voltage

across the capacitance Cg,. The g~k, gd~, and Cg,, coeffi-

cients are then derived with the following steps:

i) Measure the dc current–voltage characteristics of

the FET.

ii) Fit the experimental curves with Tajima’s equation

[s], lDS = ~0,$, o& and with the abrupt junction
capacitance equation, Cg$= ~( Ug,).
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TABLE I
VALUES OF TRANSCONDUCTANCE g., DRAIN CONDUCTANCE gd,

AND SCHOTTKY-BARRIER JUNCTION CAPACITANCE C..

FOR THE BIAS V&. = – 1.0 V AND Vd,o = 4.0 V ‘“

$ml

9m2

9fn.J

K133E-!

3.0E2E-2

- 2.S23E-5

gdl

9d2

9d3

T8.99X-3 Cgsl

- 2.9UE-4 G3S2

2.7SSS-5 %93

Units are mS and pF.
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LWlr-tz

3270E-13

2.731E-13
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Fig. 5. Realization of the microwave FET oscillator. Bias circuits are

omitted for clarity.

iii) Derive numerical values of the g~~, gd~, and Cg,~

coefficients.

Table I gives the values for a medium-power FET

(Mitsubishi MGF-1802). With these values, the transfer

functions 111, Hz, and H3 can be calculated, and finally

the amplitude and frequency of oscillation can be obtained

using the first-order determining equation (5).

IV. EXPERIMENTAL RESULTS

In order to verify the theoretical predictions, a mic-

rowave FET oscillator has been realized (Fig. 5). The

usual FET bias circuit with two independent voltages Vg,

and V’& (not drawn in the figure) allows connection of the

source electrode directly to ground, giving enhanced out-

put power. A length of rnicrostrip line has been used as a

parallel feedback component. The transfer function of the

passive circuit (between planes PI and P2) has been

measured for three different electrical lengths, in order to

check the lumped-elementvalues CF, LF of the equivalent
T configuration.

Table II shows the theoretical and experimental values

of the oscillation frequency and output power for those

three lengths of microstrip. The discrepancy between nu-

merical data and measured values is always smaller than

10 percent.

TABLE II

THEORETICAL AND EXPERIMENTAL RESULTS OF OSCILLATION
FREQUENCY AND OUTPUT POWER FOR THE BIAS

V’,. = –1.OVAND ~~,0 = 4.OV

WH

V. CONCLIJSION

A novel approach to determining the amplitude and

frequency of nonlinear microwave FET oscillators has

been presented. The nonlinearities of the transistor are

modeled from S parameters and dc characteristic mea-

surements. Then, nonlinear transfer functions HI, Hz, .-.

are calculated with the Volterra series formalism. Finally,

the output power and the oscillation frequency are ob-

tained by solving a determining equation. Comparison

with measured data gives a discrepancy less than 10 per-

cent. This good agreement between the theoretical and the

experimental results shows that Volterra series provide an

interesting tool for the analysis of a nearly sinusoidal

oscillator. Moreover, using these nonlinear transfer func-

tions, the intermodulation betwlaen noise sources and the

signal at the oscillation frequency can be calculated and

the oscillator output spectrum derived.

APPEND [X

DmwAmoiw OF TRANSFER FUNCTIONS HI, H2

AND H}

For a single-loop nonlinear feedback system (Fig. l(a))

the output y(t) of its associated open loop (Fig. l(b)) can

be expressed as a Volterra series of the input u(t) as

(Al)

As a particular case, let the input to the system F be

(A2)
,=1

Substituting (A2) into the Volterra series (Al) gives the

corresponding output of F

ml M

OA,,Ai, 00. ArneJ(%1+%2+ . . +h)t

)

(A3)
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where %n(J”al, J“ti2,. “ “, ju~) is the n th-order transfer

function of the system F and is also called the n-dimen-

sional Fourier transform of h. ( ~1,~2,. . . . r~).

Applying formula (~3~ to the system S (Fig. 2(b)) with
A

input u(t) = — eJ”f + — e–Jut, the output can be written
2 2

as follows:

A. AY
z(t) = ‘e/@t+ ~e–J”t

2 2

eJ(@,, +u/2+ +C%n)f (A4)

where %. is n th-order transfer function of the system S,

A*
Al,=; or ~

and ti,~=~u k=l,. ... n, with n an odd integer.

Identifying the proper terms, we can write

If the time origin is chosen such that the condition

AZ = A is verified, the n th-order determining equation is

written as

dN(A, o)=%?l(jti) +Q?1(jti)lA12 +f12(ju)lA14

+ . . . +LIN(jQ)/A12N-1=0 (A6)

where .XI( J“O) = HI( J’U) the first-order transfer function

and Q, ( jti ) is a linear combination of the higher order

transfer functions H2, H3, c. . . Hz, + ~.

These nonlinear transfer functions are then determined

with the following method. According to (8) and (9), the

linear parts of the drain-source and gate–source currents

are

~dJL(~)= gmlqgs(~) + lbluds(~) (A7)

~g,L(~)= :[%l%JO] (A8)

with the shunt nonlinear current source

Id,NL(t) = i i...(t)= i lgmku:s(~)+gdk~$s(~)l (A9)
k=’ k=2

and

respectively.

Now let Vg,( t) and Vd,( t) have a series development in

~g,(~)= 5 Ug$,l(f) (All)
~=1

Ud,(t) = ~ U,{,n(t) (A12)
?7=1

where Vg$,l( t) and V~,,,( t) can be expressed as Volterra

series of the input Eg( t) as

(A13)

(A14)

Substituting (All) and (A12) into (A9) and (A1O) and

collecting the proper terms yields

id,2(t) = gn,2z&(t) + H&t, (A15)

id.3(t) = gm13&l(t) +2g,,,Yg,~(t) u~s2(t)

+ &f3&l(t) + 2&J2udsl(t) Uds’(t) (A16)

and

d

( )] (A17)~g,2(t) = — [Cgs’u;sl f
dt

d
3 (t)+2cgs2ug,1(t) cg,2(t)] (A18)~gs3(t) = — [cgs3~gsl

dt

When the excitation is specifically a sum of K distinct

exponentials,

K

~g(t) = ~ exp(j2rF1t)
[=1

the expressions in the frequency domain are given by the

Fourier transform [6]:

~ds’(~1> ~’) = fh~gsl(m~gsl(m

+ gd2H.,,(F’J ~.sI(~2) (A19)

1d,3( Fl, F’, Fs) = gm3Hgsl (~ J~gs,(F2)Hgs,(F3)

( ) (F2, F3)]+ zgm2S [Hgsl F1 Hgs2

+ gd3Hd,1( F1 ) ‘dsl( F2) ‘dsl ( ‘3 )

+zgd2S[Hd,1(F~) ~d,2(F2, F3)1 (A20)

and

1g,2(Fl, FT) = j2~(Fl+ Fz)Cg,’Hg,l(F1)H~.l(F’)

~g.q(F1t%,Fs) = j2fi’(F1+F2+F3)

~{ cgs3Hg.~(F~)Hg,, (F’) Hg,l(F3) (A21)

+ 2cg.2s[Hg,l(Fl) Hg,2(F21 F3)] } (’+22)
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where

1
S[H1(F1)H2(F2, F3)] =+ J1(F1)H2(F2, F3)

+ %(~2)~2(~3> ‘l)

+ 111(&)~2(~1, ~2)] (A23)

with HI = Hg,l or H~~l and Hz = Hg~2 or H~,2 respectively.

The node-pair method applied to the network in Fig. 4

gives the following matrix description between the voltage

and current vectors V and 1:

YxV=I (A24)

where Y is an 8 x 8 admittance matrix (the nodes being

referred to by numbers 1 to 8 in Fig. 4).

When the excitation is Eg(t) = exp (~277Ft), the linear

transfer functions Hg,l( F), H~$l(F), and HI(F) in the

frequency domain can be calculated by

Substituting Zig,l(F) and H~,l(F) into (A19) and

(A21), we can obtain the second-order transfer functions

Hg.A& Fz)> Hd.z(?l) Fz), and Hz(FD F2) by the follow-
ing equation:

Higher order transfer functions can then be calculated

from (A20) and (A22) using a recursive method of the type

described in [7] and [8].
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