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Nonlinear Analysis of Microwave FET
Oscillators Using Volterra Series

YONGCAI HU, JUAN JESUS OBREGON, anD JEAN-CLAUDE MOLLIER

Abstract —In this paper, a novel approach to determine the amplitude
and frequency of nonlinear FET oscillators is presented. The nonlinear
elements of the active device are modeled by Volterra series. The fre-
quency and amplitude of oscillation are then calculated by solving two
algebraic equations. Experimental results obtained from a constructed
oscillator confirm the validity of the theory, the discrepancy between
measured and calculated frequency and amplitude values being less than 10
percent,

I. INTRODUCTION

N ORDER TO determine the amplitude and frequency

of a nearly sinusoidal oscillator, several methods have
been used, among them the describing function method [1]
and the harmonic balance method [2]. Recently, the use of
Volterra series has been proposed to analyze the oscilla-
tions in nonlinear systems {3]. In this paper, we demon-
strate the applicability of the Volterra series method to the
design of microwave oscillators. The amplitude and fre-
quency of oscillation may be obtained quickly to within
any desired accuracy using a recursive algorithm.

II. THEORETICAL BACKGROUND

The describing function formalism is very attractive for
one-port active device oscillators. Based on this formalism,
a method has been proposed by Bates [1] to calculate the
amplitude and frequency of oscillation for an IMPATT
diode oscillator. :

For two-port actives devices such as FET’s, the nonlin-
earities depend on two variables: the gate—source voltage
v,,(?) and the drain-source voltage v,,(¢). In this case, the
Volterra series can serve in the analysis of a nearly sinu-
soidal oscillator.

Let us consider a single-loop nonlinear feedback system
and its associated open loop, as illustrated in Fig. 1(a) and
(b), respectively. This system is assumed to have a conver-
gent Volterra series representation [4]:

»(1) = ); [ [ o6

[Tu(w)exp(joz,) do, (1)
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Fig. 1. (a) A closed-loop nonlinear fecdback system. (b) Associated
open-loop nonlinear system.
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Fig. 2. (a) Equivalent representation of single-loop feedback system in

Fig. 1(a). (b) Associated open-loop system.

where u(t) and y(¢) are the input and the output signals,
respectively, and w; is a radian frequency. We have to
calculate the determining equation of this system, from
which the amplitude and frequency of oscillation can be
determined.

If the system in Fig. 1 has a periodic solution of radian
frequency «, then in general all harmonics kw of this
fundamental pulsation can be found in the Fourier spec-
trum of u(¢) and y(z). The fundamental frequency com-
ponent can be extracted from y(¢) using an ideal low-pass
filter P and the remaining components by an ideal high-
pass filter F— P. Then, transformation of the single-loop
feedback system into the system shown in Fig. 2(a) imme-
diately follows.

From the definition of P, we can write

E3
el + —e I

s @

u(r)=Ply(1)] =

(ST RN

where A4 is the complex amplitude of the signal at the
pulsation w.

Now cut the loop in Fig. 2(a) and redraw the resulting
system in Fig. 2(b). The output z of the associated open-
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loop system S is written as follows:

*
z

z(?) =—A—zef“”+ e It
2 2

(3)

because of the “ideal filter P.”

The necessary and sufficient condition for the system in
Fig. 1(a) to have a periodic solution of pulsation is that
A, = A. According to this condition, the determining equa-
tions can be calculated.

With the help of Volterra series theory, the Nth-order
determining equation is obtained as (see the Appendix)

dy(4,0) = H(jo)+Q(jo)4?+Q(jo) 4"+ -
+Qy(je)|4?"-1=0 (4)
so that its solution gives the output amplitude 4 and
pulsation of the nearly sinusoidal oscillation to any desired
accuracy with increasing N. In our applications, only weak
nonlinearity is considered and an acceptable accuracy can

be obtained (about 10 percent) in solving the first-order
determining equation. So for N =1, eq. (4) becomes

di(jw) = Hl(jw)+ﬂl(jw)A2_1= 0

)

where
« 1 - . .
Ql(]w) = Z{‘%pB(Jw’ Jw, — jw)

+ 95 (jo, = jo, jo)+ (- jo, jo, jo)} (6)

with

o8, o = o) = Ho( 20, = i) 12 )
+H2(jw,0)£{—2—1(—%+H3(jw,jw,—jw) (7a)

%<~jw,jw,jw)=H2<o,jw>%§“—)
(o, 20) T g ) (1)

and

%(Jw,—jw,jw)=Hz(0»jw)%_(o%l
0.0 LI o, o). 79

The second- and third-order transfer functions H, and H,
are defined in the Appendix.

III. APPLICATION TO MICROWAVE

FET OSCILLATORS

Let us consider a microwave FET oscillator with a
parallel feedback configuration as schematized in Fig. 3.
Cr and L are feedback components which may be con-
sidered as electrically equivalent to a length of transmis-
sion line.
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Fig. 3. A microwave FET oscillator with parallel feedback and resistive

load R,.
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Fig. 4. Equivalent circuit of the open-loop FET oscillator for calculat-
ing the transfer functions:

L,=0136nH C,=025pF R,=275Q
L,=033nH  C,=0046pF R,=338Q

L;,=009nH  C,=020pF R =12
L,=0420H  C,=029pF R,=198
L, =0.04 nH

The transfer functions H,, H,, and H, of its associated
open-loop circuit (Fig. 4) can be calculated by a recursive
algorithm (see the Appendix) where three nonlinearities
have been considered: the transconductance (g,,) and the
drain conductance (g,) (both represented by a current
source ), and the Schottky-barrier junction capacitance
C,- Z, and Z, represent the load impedances when the
loop is opened.

The drain-to-source and gate-to-source currents I, and
I, can be approximated by a power series as

3
Ids(t) = kz [gmkvgs(t) + gdkvzlics(t)]
=1

(8)

and

©)

where v,, is the drain-source voltage and v,, is the voltage
across the capacitance C,,. The g,.,, g4, and C,, coeffi-
cients are then derived with the following steps:

d 3
I(t)= = Y. C k(1)
k=1

i) Measure the dc current—voltage characteristics of
the FET.

ii) Fit the experimental curves with Tajima’s equation
[5], Ips=fv,, Ug, and with the abrupt junction
capacitance equation, C, = f(v,,).
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TABLE 1
VALUES OF TRANSCONDUCTANCE g,,, DRAIN CONDUCTANCE g,
AND SCHOTTKY-BARRIER JUNCTION CAPACITANCE G,
FOR THE BIAS V(o =—1.0 VAND V,, =40V

omt 1053¢-¢ 91 8.999E-3 Cgst 1180E-12
9m2 308262 90 - 29ME-§ | Cge 3.2766-15
O3 - 25555 | og 275565 Ogs3 273E-8
Units are mS and pF.
Bandpass
filter
P2 P1

000CH :

tuning cd S Cd o
paths c
Fig. 5. Realization of the microwave FET oscillator. Bias circuits are

omitted for clarity.

iii) Derive numerical values of the g, 84, and Gy,
coefficients.

Table I gives the values for a medium-power FET
(Mitsubishi MGF-1802). With these values, the transfer
functions H;, H,, and Hj can be calculated, and finally
the amplitude and frequency of oscillation can be obtained
using the first-order determining equation (5).

IV. EXPERIMENTAL RESULTS

In order to verify the theoretical predictions, a mi-
crowave FET oscillator has been realized (Fig. 5). The
usual FET bias circuit with two independent voltages V,
and ¥V, (not drawn in the figure) allows connection of the
source electrode directly to ground, giving enhanced out-
put power. A length of microstrip line has been used as a
parallel feedback component. The transfer function of the
passive circuit (between planes P1 and P2) has been
measured for three different electrical lengths, in order to
check the lumped-element-values C, Ly of the equivalent
T configuration.

Table II shows the theoretical and experimental values
of the oscillation frequency and output power for those
three lengths of microstrip. The discrepancy between nu-
merical data and measured values is always smaller than
10 percent.

TABLE II
THEORETICAL AND EXPERIMENTAL RESULTS OF OSCILLATION
FREQUENCY AND OUTPUT POWER FOR THE BIAS

Veso=—1O0VAND /), =40V
Frequency | Frequency | Output power | Output power
calculated | measured colculated measured
2.90 (GHz) | 2.75 (GHz) | 18.6 {dBm) 18.2 (dBm)
2.80 (GHz) | 2 68 (GHz) | 18.7 (dBm) 18.3 (dBm)
2.70 (dBm)| 2.61 (GHz) | 18.9 (dBm) 18.7 (dBm)
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V. CONCLUSION

A novel approach to determining the amplitude and
frequency of nonlinear microwave FET oscillators has
been presented. The nonlinearities of the transistor are
modeled from S parameters and dc characteristic mea-
surements. Then, nonlinear transfer functions H,, H,,- - -
are calculated with the Volterra series formalism. Finally,
the output power and the oscillation frequency are ob-
tained by solving a determining equation. Comparison
with measured data gives a discrepancy less than 10 per-
cent. This good agreement between the theoretical and the
experimental results shows that Volterra series provide an
interesting tool for the analysis of a nearly sinusoidal

" oscillator. Moreover, using these nonlinear transfer func-

tions, the intermodulation between noise sources and the
signal at the oscillation frequency can be calculated and
the oscillator output spectrum derived.

APPENDIX
DERIVATION OF TRANSFER FUNCTIONS H,, H,
AND H,

For a single-loop nonlinear feedback system (Fig. 1(a))
the output y(¢) of its associated open loop (Fig. 1(b)) can
be expressed as a Volterra series of the input u(¢) as

TORDV B DNCRRRRAY  PY s
A (A1)

As a particular case, let the input to the system F be

M
w(t) = Y A erot,
=1

Substituting (A2) into the Volterra series (Al) gives the
corresponding output of F:

© + o0
y()y=3Y f /h,,('rl,'rz,- ' -,Tn)(A,e/“"(’”l))
n=1 —®

(A2)

=1

M
( y Aiejw.(t—fz)) o dmdr,- - dr,

M
Z %(«fwtl’jwtz’“'7jwz,,)

fatgy iy =1

1

(A3)

i

A, A - A, el(on oyt - +1,.)t)
2 n
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where ,(jw, jw,. -, jw,) is the nth-order transfer
function of the system F and is also called the n-dimen-
sional Fourier transform of 4 (7, 7, -, ,).

Applying f(jmula (/?43*) to the system S (Fig. 2(b)) with

input u(z) = 5e1‘°’ + ——e™/*, the output can be written

as follows:
A *
z(t) = 7e""’+ 5 e /vt
oo 2
= Z Z n(jwzl~ o, - 'J"*’:,,)AIIAIZ A,
n=1\y. g,=1
e/ttt (A4)
where 5, is nth-order transfer function of the system S,
A4 A*
A,= 3 or >

and w, =fw k=1,--+,n, with n an odd integer.
Identifying the proper terms, we can write

7"’”[ %ﬂ(Jw)—ef“’
A A A*
+ (oo, o = fu) T o el
A A* A
+=9f3(].w7—jw,jw)ET_z_eJ(w~w+w)t
A* A A
+ H#(— jo, jo, ﬂo)???e“ wreter (A5)

If the time origin is chosen such that the condition
A, = A is verified, the nth-order determining equation is
written as

dy(4,0) = (jo)+Q(jo)4*+Q,(jo) |4

-+ Q,(j)4PY-1=0 (A6)

where 5,(jw)= H,(jw) the first-order transfer function
and @, (jw) is a linear combination of the higher order
transfer functions H,, Hy,- -+, H,, , ;.

These nonlinear transfer functions are then determined
with the following method. According to (8) and (9), the
linear parts of the drain—source and gate—source currents
are )

1. (2) =gmlU (1) + 8wy (1) (A7)

gsl(t [ ]

with the shunt nonlinear current source
3

3
IdsNL(t) = Z idsk(t)= Z (P
k=2

és(t) + gdkvclics(t)| (A9)
k=2

(A8)

and
3

Y i gsk(t

k=2

é[ Coi(1)] (A10)

IgsNL(t) =

respectively.
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Now let V, (¢) and V, (¢) have a series development in

0, (1) = i von(1) (A1)
ve(1) = X 04 (1) (A12)

where V,,(¢) and V,,(¢) can be expressed as Volterra

series of the input E, (7) as

+ o0 + o0 n
gsn(t) / / oohgsn(’rl"'.”rn)].=—[1Eg(t_Tl)dTl
(A13)

+ 00 + 00 "
Udsn(t) =»/; : ‘/; hdsn('rlﬂ' : '7Tn) ljllEg(t_Tl) dTl'
(A14)

Substituting (A11) and (A12) into (A9) and (A10) and
collecting the proper terms yields
iga(t) = gmzvévl(t) + gd7U§sl(t (A15)
lds3(t) gm3vgsl(t)+2gm7 sl(t)UgSZ(t)

+ 843000 (1) 28,00, (1) 00 (1) (A16)

and

d
[ gs2U gsl(t)] (A17)

igsZ(t)

d
gs3(t) dz[ 253U gsl(l)+2Cgslvgyl(t)vgs2(t)] (A18)

When the excitation is specifically a sum of K distinct
exponentials,

=

E (1) =Z

p(j27Fz)

the expressions in the frequency domain are given by the
Fourier transform [6]:

I, (F), F,) = gm2Hgsl(F1)Hgsl(F2)
+gd’>Hdsl(F)Hdsl(F2) (A19)
Idsa(F17F2sF3)=gm3 sl(F) sl(Fz) sl(Fs)

+2gm2S[ gsl(Fl) s2(F29}73)]
+gdsts1(F1)Hds1(F2)Hdsr(Fa)
+28,S[Hy(F) Hyyo (Fy, F)] (A20)
and
gsZ(FlﬂF)—.]zw(F_’_F) gs2 gsl(Fl)
(F.Fy, F) = j2a(F + F+ F)
{ gs3 sl(F) sl(F2)Hgs1(Fz’>) (A21)
+2Cgs2S[Hgsl(Fl)Hgs2(F2’F}))]} (A22)

g (F2)

gs3
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where (6] I.J. Bussgang, L. Ehrman, and"J. M. Graham, “Analysis of nonlin-

: ' ear systems with multiple inputs,” Proc. IEEE, vol. 62, Aug. 1974.

[7] - M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems.
New York: Wiley, 1980.

, 1 '
S[Hl(Fl)H2(F2’F3)] - §[H1(F1)H2(F2’F3) [8] R. Soares, J. Graffeuil, and J. Obregon, Gads FET Applications.

+ H(F)Hy(F,. F,)
FH(B)(EL B (A23)

with H,= H g1 07 H,q and H, = H,, or H,,, respectively.

The node-pair method applied to the network in Fig. 4
gives the following matrix description between the voltage
and current vectors V and I: -

YXV=I (A24)

where Y is an 8 X8 admittance matrix (the nodes being
referred to by numbers 1 to 8 in Fig. 4).

When the excitation is E, (¢) =exp(j27Ft), the linear
transfer functions H, ,(F), H,;(F), and H,(F) in the
frequency domain can be calculated by

Hgsl(F) Yo E;
Hyg(F) [=[Y(F)]7'%| o (A25)
H,(F) 0

Substituting H,;(F) and H, (F) into (Al9) and
(A21), we can obtain the second-order transfer functions
H,,(F, Fy), H,y(F, F), and Hy(F,, F,) by the follow-
ing equation: :

Hgs2(Fl’F2) 0
Hyo(F, B) | = [Y(F+ B)] 7| — Lea(F )
Hz(Fsz) _Ids2(F17F2)

(A26)

Higher order transfer functions can then be calculated
from (A20) and (A22) using a recursive method of the type
described in [7] and [8].
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